

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) & 12 (B) of UGC; Member AIU)

Department: ELECTRICAL ENGINEERING

Giani Zail Singh Campus College of Engineering & Technology, MRSPTU

Program: <u>B Tech ELECTRICAL ENGG.</u>

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
						CO1.	To understand and analyze basic DC and AC circuits	2	3										1			3
						CO2.	To study the use and working principle of single phase transformers	2					3						1	3		
BASIC ELECTRICAL ENGINEERING	01	1	4	42	310	CO3.	To study the application and working principles of three phase and single phase induction motors.	2					3						1	3		
BASIC EL ENGINEE	BELEE0-101					CO4.	To introduce to the components of low voltage electrical installations	2					3						1	3		

COURSE ARTICULATION MATRIX

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ELECTRICAL LAB						CO1.	Get an exposure to common electrical components and their ratings	2					3			2			1		3	
ELECT					7	CO2.	Make electrical connections by wires of appropriate ratings	2					3			2			1	2	3	
BASIC ELE ENGINEERING LAB)-102	1			0 0	CO3.	Understand the usage of common electrical measuring instruments	2					3			2			1		3	
BASIC ENGINI	BELEE0-102					CO4.	Understand the basic characteristics of transformers and electrical induction motors	2					3			2			1		2	3
CIRCUIT						CO1.	Apply network theorems for the analysis of electrical circuits	1	3		2								1		3	1
CIR				60	0	CO2.	Obtain the transient and steady- state response of electrical circuits.	1	3		2								1		3	1
ELECTRICAL ANALYSIS	BELES1-301	3	4	9	3 1	CO3.	Analyze circuits in the sinusoidal steady-state (single-phase and three-phase).	1	3		2								1		3	1
ELEC ANAL	BELE					CO4.	Analyze two-port circuit behavior	1	3		2								1		3	1
RONIC						CO1.	Understand the characteristics of transistors	2					1						1		3	
ELECTR					0	CO2.	Design and analyze various rectifier and amplifier circuits.	1	3	3			1						1	3	2	
	-302	3	e	45	3 0 (CO3.	Design sinusoidal and non- sinusoidal oscillators.	1		3			1						1	3	2	
ANALOG CIRCUITS	BELES1-					CO4.	Understand the functioning of OP-AMP and design OP-AMP based circuits	2		3			1						1	3	2	

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
INES						CO1.	Understand the concepts of magnetic circuits.	3					1						1			1
MACH					0	CO2.	Understand the operation of D.C. machines	3					1						1	3		
ELECTRICAL MACHINES - I	S1-304	3	4	60	31	CO3.	Analyze the differences in operation of different D.C. machine configurations.	1	3				1						1	3		
ELEC – I	BELES1					CO4.	Analyze single phase and three phase transformers circuits.	1	3				1						1		3	
I -						CO1.	To acquire skills to operate all types of D.C. machines.	3					3			1			1	3		1
AB	-305	3	1		002	CO2.	Ability to analyze the speed control methods and efficiency of DC machines	1	3			1	2			1			1	2	3	1
ELECTRICAL MACHINES L	BELES1.					CO3.	To be able to compute efficiency and voltage regulation of transformers.	1	2				3			1			1	2	3	1
						CO1.	To understand the basic laws of electromagnetism.	3											1		1	1
C FIELDS					0	CO2.	To obtain the electric and magnetic fields for simple configurations under static conditions	2	3										1		3	1
GNETIC		3	4	0 9	31	CO3.	To analyze time varying electric and magnetic fields.	2	3										1		3	1
ELECTROMAGNE	BELES1-306					CO4.	To understand Maxwell's equation in different forms and different media	3	2		1								1		3	1
ELEC	BELE					CO5.	To understand the propagation of EM waves.	3	2		1								1		3	1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
						CO1.	Kinematics of particles	2	3				1						1		3	1
						CO2.	Co-planar and concurrent forces	2	3				1						1		3	1
NG S	T		_	0	0	CO3.	Solids mechanics	2	3				1						1		3	1
ENGINEERING MECHANICS	BMECE0-001		4	99	3 1	CO4.	Moment of inertia and center of gravity	2	3		1		1						1		3	1
ENGI	BME					CO5.	Role of friction in screw Jack and inclined planes	2	3	1	2		1						1		3	1
						C01.	To identify global environmental problems arising due to various engineering/industrial and technological activities and the science behind these problems.	1	2		3		2	3					1		3	1
						CO2.	To realize the importance of eco-system and bio-diversity for maintaining ecological balance	1	2				2	3					1	3		1
ES		e	0		2 0 0	CO3.	To identify the major pollutants and abatement devices for environmental management and sustainable development	1			3		2	3					1	3		1
VTAL SCIENCES						CO4.	To estimate the current world population scenario and thus calculating the economic growth, energy requirement and demand.	1	2		3		2	3					1		3	1
ENVIRONMENTAL	BMNCC0-002					CO5.	To understand the conceptual process related with the various climatologically associated problems and their plausible solutions.	1	2	3	3		2	3					1		3	1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
						CO1.	Understand working of logic families and logic gates.	3					1						1		3	1
ONICS						CO2.	Design and implement Combinational and Sequential logic circuits.	2		3			1						1	3	2	1
DIGITAL ELECTRONICS	-401	4	3	45	300	CO3.	Understand the process of Analog to Digital conversion and Digital to Analog conversion	3					1						1		3	1
DIGITA	BELES1					CO4.	Be able to use PLDs to implement the given logical problem	3		3			1						1	3		1
SLAB						CO1.	To give students a practical knowledge about various types of gates and verify their truth tables.	3					1			1			1	3		1
DIGITAL ELECTRONICS LAB		4	1		002	CO2.	To give students a working knowledge to connect digital circuits and verify their truth tables.	3					1			1			1	3		1
DIGITAL E	BELES1-402					CO3.	To give students knowledge of working of different combinational and sequential circuits.	3					1			1			1	3		1
AL -II						CO1.	Understand the concepts of rotating magnetic fields	3	2										1		3	1
ELECTRICAL MACHINES –I	ES1-403	4	4	0 9	310	CO2.	Understand the operation of AC machines.	3	2				3						1	3		1
ELEC MAC	BELES1					CO3.	Analyze performance characteristics of AC machines	2	3				1						1		3	1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
B						C01.	Obtain equivalent circuit parameters of single-phase and three- phase Induction motors	1	2	3						1			1		3	1
E-II LA						CO2.	Control speed of Induction motors by different methods	1	2	3		1	3			1			1	3		1
ELECTRICAL MACHINE-II LAB		4	1		002	CO3.	Draw open and short circuit characteristics of three-phase alternator and V and inverted V curves of synchronous motor	1	2				3			1			1		3	1
TRICA	BELES1-404					CO4.	Find out voltage regulation of an alternator by different tests.	1	3				3			1			1		3	1
ELEC	BELF					CO5.	Synchronize two or more 3- phase alternators.	1	2	2	2	1	3			1			1	3		1
						CO1.	Understand the differences between signal level and power level devices	3	2				1						1	3		1
ICS		4	3	45	0 0	CO2.	Analyze controlled rectifier circuits.	2	3				3						1		3	1
POWER ELECTRONICS	5				3	CO3.	Analyze the operation of DC- DC choppers	2	3				3						1		3	1
POWER E	BELES1-405					CO4.	Analyze the operation of voltage source inverters.	2	3				3						1		3	1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ELECTRONICS					2	CO1.	Students will be able to verify the characteristics of SCR and UJT and triggering pulses for them.	2	2							1			1		3	1
	BELES1-406	4			0 0	CO2.	They will be able to visualize and analyze the performance of various converter circuits.	2	3				3			1			1		3	1
POWER LAB	BELE					CO3.	They will be able to control the speed of motors using thyristors	2	2		2	3	3			1			1	3		1
ß					0	CO1.	Understand the concepts of continuous time and discrete time systems	3	2										1		3	1
ALS EMS	BELES1-407	4	4	60	31	CO2.	Analyze systems in complex frequency domain.	2	3										1		3	1
SIGNALS SYSTEMS	BELF					CO3.	Understand sampling theorem and its implications.	2	2	3	2	2							1	3	2	1
						CO1.	To choose working voltage and economic size of conductors for transmission and distribution systems	3	2		1		1	1					1	3		1
I - SMELEMS - I	1	5	4	0 9	310	CO2.	To analyze performance of transmission lines and underground cables	1	3										1		3	1
POWER SY	BELES1-501					CO3.	To select and design overhead line insulators and transmission lines.	1	2	3			1						1	3		1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
2STEMS					0	CO1.	To do modeling of linear-time- invariant systems using transfer function and state- space representations	1	2	3	2	2							1		3	1
CONTROL SYSTEMS	BELES1-502	5	4	60	31	CO2.	To do the stability assessment for linear-time invariant systems	1	3	2	2	2							1		3	1
CON	BEL					CO3.	To design simple feedback controllers.	1	2	3	2	2	2						1	3		1
MICROCONTROLLE RS AND PLC						CO1.	Know about the architecture, operation and instruction set of 8051 microcontroller	3											1	3		1
NTR LC)3	5	3	45	0 0	CO2.	Be able to do programming of 8051 microcontrollers	2		3									1		3	1
CROCON AND PLC	ES1-503			_	3	CO3.	Be able to Interface 8051 with peripheral devices.	2		3			3						1	3		1
MIC RS A	BELES1						Be able to use PLCs.	1		3			3						1	3		1
LABORATORY						C01.	Students will have more detailed insight about the need of various equipment used for transmission and distribution of power	3					3			1			1	3		1
S – I		5	1		002	CO2.	They will be able to draw performance characteristics of these equipment	2	3							1			1		3	1
POWER SYSTEM	BELES1-504					CO3.	To practically compute parameters and performance of transmission lines and feeders	2	3							1			1		3	1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
EMS						CO1.	To understand the basics of MATLAB software.	3								1			1		1	1
CONTROL SYSTEMS LABORATORY	5	S	1		0 2	CO2.	To understand variety of control system strategies.	3	1				2			1			1		3	1
TROL	ES1-505				0	CO3.	To acquire skills to understand all types of control components.	3					2			1			1		3	1
CON	BELES1					CO4.	Ability to analyze the stability of control systems		3							1			1		3	1
ROL						CO1.	Become familiar with the microcontrollers and PLCs.	3					3						1	3		1
MICROCONTROL LER AND PLC Lab	BELES1-506	S	Η		0 0 2	CO2.	Be able to write assembly language programs for various types of applications	2		3						1			1	3	2	1
MICI LER	BELI					CO3.	Become familiar with the use of PLCs in industry	2		3			3			1			1	3		1
						CO1.	To draw the characteristics of DC motors and induction motors.	2	3	1									1		3	1
RICAL	-511	S	3	45	300	CO2.	To control the speed of DC motors using power electronic converters.	2		3		1	3						1	3		1
ELECTRICAL DRIVES	BELED1-511					CO3.	To use power electronic converters for induction motor speed control	2				1	3						1	3		1
						CO1.	Know the constructional features.	3					2						1	3		1
ELECTRICAL MACHINE DESIGN	2	S	3	45	0 0	CO2.	Be able to evaluate performance characteristics of electrical machines	2	3				1						1		3	1
CTRIC	ED1-512				3	CO3.	Be able to carry out a basic design of an ac machine	2		3		2	2						1	3		1
ELEO MAC	BELED1.					CO4.	Be able to use software tools to do design calculations	2		3		2							1	3		1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
GNETI						CO1.	Provide solution to real life plane wave problems for various boundary conditions.	2	2		3		1						1		3	1
ELECTROMAGNETI C WAVES	BELED1-513	5	3	45	300	CO2.	Visualize TE and TM mode patterns of field distributions in a rectangular wave-guide	2	3		1								1		3	1
ELEC C WA	BELH					CO3.	Analyze wave-guides and understand radiation by antennas.	2	3		1	1	1						1		3	1
						CO1.	Able to analyze the demand and supply conditions of the market and accordingly assess the position of a company	2	3	3			3					1	1	3	3	3
GINEERS					0	CO2.	Understand the basic economic problems faced by the society and make effective decisions	2	2	3	3		3					1	1	3	3	3
ECONOMICS FOR ENGINEERS	BHSMC0-019	5	3	45	3 0	CO3.	Design competition strategies, which includes costing, pricing, product differentiation, and market environment according to the natures of products and the structures of the markets	2	2	3			3					1	1	3	3	3
ECO	BHSN					CO4.	Analyze the market competitions and design strategies accordingly	2	3	3			3					1	1	3	3	3
POWER SYSTEMS-II	-601	6	3	45	0 0	C01.	Explain causes and effects of faults, components used for power system protection such as; isolators and fuses, relays, circuit breakers etc.	3	3		3		3						1	3	3	1
POWER S	BELES1-6				3	CO2.	Classify types of relays and circuit breakers and explain their working principles and operation.	3	2				3						1	3		1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
						CO3.	Protect transmission lines, feeders, bus bars, generator and transformer	3		2			3						1	3		1
						CO4.	Develop concepts about the basic principles of static and digital protection.	2				3							1	3		1
ŝ						CO1.	To explain the constructional features, characteristics and operation of various measurement devices and transducers	3	2				1						1	3	2	1
, NTS FATIO		9		45	300	CO2.	To measure R, L and C using DC and AC bridges	1	2	3			1						1		3	1
ELECTRICAL MEASUREMENTS INSTRIMENTATION	BELES1-602					CO3.	To use CRO and instrument transformers for measurement and instrumentation purposes	1	2	3			1						1	3		1
ELE(MEA INST	BELI					CO4.	To select transducers for different applications.	1	2	3			1						1	3		1
ab.						CO1.	To demonstrate operation of relays and circuit breakers	3								1			1	3		1
I II-SI	-603	9	-		0 2	CO2.	To analyze various protection schemes in power system.	2	3				1			1			1	3	3	1
POWER SYSTEMS-II Lab	BELES1-603				0	CO3.	To plot characteristics of various types of relays, circuit breakers and fuses	2	3				1			1			1		3	1
IREME & IMENT	l-604	6			0 2	CO1.	To apply the basic measurement techniques and use measuring instruments.	2	1	3			1						1	3	2	1
MEASUREME NTS & INSTREMENT	BELES1-604				0	CO2.	To measure various electrical quantities using various types of meters.	2		3			1						1	3		1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
						CO3.	To practically use current and potential transformers, CRO and DSO	2		3			1						1	3		1
N S						CO1.	To estimate the cost of various types of electrical installations.	2	3				1			1			1	3	2	1
ELECTRICAL DESIGN ESTIMATION LAB	2	9	1		002	CO2.	To identify design goals and analyze possible approaches to meet given specifications with realistic engineering constraints.	2	3	3	3		2			3			1	3	3	1
ELECTRICAL ESTIMATION	ES1-605					CO3.	To use modern engineering software tools.	2				3							1		3	1
ELE ESTI	BELES1					CO4.	To work amicably as a member of an engineering design team	2		3						3			1	3		1
SYSTEMS				10	0	CO1.	To represent the electrical wiring systems for residential, commercial and industrial consumers with standard symbols and drawings, SLD	3					1						1	3		1
RIAL	1-611	9	e	45	3 0	CO2.	To explain various components of industrial electrical systems.	3					1						1	3		1
INDUSTRIAL ELECTRICAL	BELED1					CO3.	To analyze and select the proper size of various electrical system components	2	2	3			2						1	3	3	1
x						CO1.	Represent discrete LTI systems	3											1		3	1
AR	12			10	0	CO2.	Analyze stability of open loop and closed loop discrete-time systems		3										1		3	1
NUN-LINEAR DIGITAL CONTROL	ED1-61	9	3	45	3 0	CO3.	Design and analyze digital controllers		2	3			2						1	3	3	1
DIGI DIGI CON	BELED1					CO4.	Design state feedback and output feedback controllers			3			2						1	3		1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
						CO1.	Organize a modern computer system and be able to relate it to real examples	2		3			1						1	3	2	1
a r CTURE	13	9	3	45	300	CO2.	Write efficient programs in assembly language of the 8086 family of microprocessors	2		3									1	2	3	1
COMPUTER ARCHITECTURE	BELED1-61					CO3.	Develop the programs in assembly language for 80286, 80386 and MIPS processors in real and protected modes.	2		3		1							1	2	3	1
	4					CO1.	Explain the basic concepts of electromagnetics	3											1		3	1
COMPUTATIA NAL ELECTROMA	BELED1-614	9	3	45	3 0 0	CO2.	Use computational techniques for electromagnetic fields	2	3										1		3	1
UUMI NAL ELEC	BELI					CO3.	Apply the techniques to simple real-life problems	2		3			1						1	3		1
SOLAR TEMS						CO1.	To explain the basics of wind power generation	3					1						1		3	1
XS	21	9	6	45	0 0	CO2.	To elaborate the basics of solar power generation	3					1						1		3	1
WIND & ENERGY S			~ •	4	3 (CO3.	To interpret the network integration issues and the power electronic interfaces for wind and solar generation	2	3	2	3		1						1	3		1
N						CO1.	To know the advantages of DC transmission over AC transmission	3											1		3	1
HVDC TRANSMISSION	D1-622	9	3	45	300	CO2.	To explain the operation of Line Commutated Converters and Voltage Source converters	3	1										1		3	1
HVDC TRAN	BELED1-					CO3.	To apply control strategies used for HVDC transmission system	2		3			1						1	3		1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
						CO4.	To improve power system stability using HVDC system	2		3	2		1						1	2	3	1
NOISSID						CO1.	To explain the advantages of EHVAC Transmission and problems associated with it.	3	1				1						1		3	1
TRANSMISSION	-623	9	3	45	300	CO2.	To examine the reactive parameters of lines and use methods of voltage control	2	2	3			2						1	1	3	2
EHVAC 7 SYSTEMS	BELED1					CO3.	To compute the voltage gradients of conductors and explain the associated bad effects of corona.	2	3		2		1	1					1		3	1
NI C						CO1.	To analyze the characteristics of AC transmission	2	3										1		3	1
TACIS DEVICES TRANSMISSION DISTRIBUTION	-624	6	3	45	300	CO2.	To explain the effect of shunt and series reactive power compensation	2	3										1		3	1
TRAUS TRANS	BELED1					CO3.	To apply FACTS devices to control power flow and to improve power quality	2		3	2		2						1	3		1
TO						CO1.	Understand the theories and principles of modern management	3					2					1	1	3	3	1
TION	6	6	3 6	45	300	CO2.	Apply the concepts to the management of organizations in private and public sector	2		3			3					3	1	3		1
INTRODUCTION INDUSTRIAL MANAGEMENT	BELES1-606					CO3.	Plot and analyze inventory control models and techniques.	2	3				1						1	3	3	1
INTR	BELE					CO4.	Understand JIT, MRP and Six Sigma	3					1						1		3	1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
						CO1.	Develop per unit system models of synchronous machines, transformers, transmission lines and static loads for power system studies	2		3									1		3	1
					0	CO2.	Perform load flow studies by using bus admittance matrix and to do fault analysis by bus impedance matrix	2	3		1								1		3	1
POWER SYSTEM ANALYSIS		7	3	45	3 0	CO3.	Compare features of Gauss- Siedel, Newton-Raphson and Decoupled methods of load flow analysis.	2	3										1		3	1
SYSTEM	-701					CO4.	Analyze the effect of symmetrical and unsymmetrical faults on power system	2	3		3		1						1	2	3	1
POWER	BELES1					CO5.	Analyze the effect of small and large disturbances on power system stability	2	3		3		1						1	2	3	1
INTRODUC TION TO INDUSTRY	:S1-	7	2		0 0	CO1.	Understanding about the emerging demands of the industry	3	2				3						1	3		1
IN I KUDI TION TO INDUSTR	BELES1-				2	CO2.	To develop an insight about the better human-machine interface	2	2			2	3						1		3	1
LAR	1					CO1.	Ability to develop software programs for bus matrices	1		3		2							1		3	1
POWER SYSTEM ANALYSIS I	BELES1-703	7	-		0 0 2	CO2.	Capability to develop or use software programs for load flow analysis	1	2	3	2	2	1						1		3	1
P S I	B					CO3.	Ability to compute fault currents	1	3		2		1						1		3	1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MINOR PROJECT	-704	7	2		004	C01.	Student will be able to apply the theoretical and practical knowledge gained so far, by taking up the study in the form of a project work			3	2	1	1			3		3	1	3		1
MINOR	BELES1-704					CO2.	This study is expected to provide a good initiation for the students in R&D work			3	2	1	1			3		3	1		3	1
VOLTAGE						CO1.	Knowledge of generation and measurement of DC, AC, & Impulse voltages	3											1	3		1
-	1	7	3	45	300	CO2.	Knowledge of tests on HV equipment and on insulating materials as per the standards	3					3						1	3		1
HIGH ENGINEERING	BELED1-711					CO3.	Knowledge of how over-voltages arise in a power system and protection against these over- voltages.	3	3	3			3						1	3	2	1
HYBRID						CO1.	Develop mathematical models to describe vehicle performance	2		3									1		3	1
						CO2.	Analyze fuel efficiency of hybrid and electric drive trains	2	3				2	1					1		3	1
જ		7	3	45	0 0	CO3.	Control various types of drives.	2		3	3		3						1	3		1
RICAL	-712			4	3 (CO4.	Analyze different types of energy storage systems	2	3				2						1	2	3	1
ELECTRICAL VEHICLES	BELED1					CO5.	Select the size of a drive system and Implement energy management strategies	2		3	3		3	1					1	3		1
UCTION TO DIGITAL	BELED1-	7	3	45	300	CO1.	To classify relays, such as; electromechanical, static and numerical relays and describe their merits and de-merits	3	3				2						1	3		1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
						CO2.	To explain the need of numerical relaying algorithms.	2	3										1		3	1
						CO3.	To explain the basic block diagram of a digital protection system	3	2										1		3	1
						CO4.	To interface elements with microprocessor to develop digital relays	3		3	2		3						1	3		1
ESSING						CO1.	To represent signals mathematically in discrete-time, and in the frequency domain and analyze them using Z-transform	2	3	3									1		3	1
DIGITAL SIGNAL PROCESSING		7	m	45 25	300	CO2.	To implement Discrete Time Systems using the Discrete- Fourier Transform (DFT) and the FFT algorithms.	2		3									1		3	1
AL SIG	1-714					CO3.	To design digital filters for various applications	2		3		1	3						1	3		1
DIGITA	BELED1-714					CO4.	To apply digital signal processing for the analysis of real-life signals	2	3	3		1	1						1	3	3	1
& and						CO1.	Understand project characteristics and various stages of a project	3	3				1					3	1	3	2	1
CT JEMENT DRENETIRSHIP	0-024	7	m	45	300		Analyze the learning and understand techniques for Project planning, scheduling and Execution Control.	3	3			1	3					3	1	3	2	1
PROJECT MANAGEMENT ENTREPRENET	BHSMC0-024					CO3.	Know the parameters to assess opportunities and constraints for new business ideas	3			3		2					3	1	3	2	1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
						CO4.	Understand the systematic process to select and screen a business idea	3	2	3			2					3	1	3	2	1
						CO5.	Understand various funding opportunities available for start- up and new ventures	3	2	1			3					3	1	3	2	1
ICS OF						CO1.	Students will be able to differentiate among types of loads and related terminology	2	3				1						1		3	1
K & ECONOMICS		8	ę	45	3 0 0	CO2.	They will be able to estimate various costs involved in the power plants and tariffs imposed on different categories of consumers	2	3				3					2	1	3	2	1
ATION LC PO	. 801					CO3.	They can select the size and location of a power plant	2		3	2		3	2				2	1	3		1
GENERATION & F ELECTRIC POWER	BELES1-801					CO4.	They will be enabled to co- operate hydro and steam power plants	2		3	2		3	2				2	1	3	2	1
MAJOR PROJECT	- 802	8	4		0 0 8	CO1.	Student will be trained to apply the theoretical knowledge and practical experience gained so far, by conducting the study in the form of a project work.		1	3	2		1			3	2	2	1	3		1
MAJOR	BELES1					CO2.	Students will get a good training in R&D work and technical leadership		1	3	2		1			3		2	1		3	1
CO NS FR	LE	8	3	45	3 0	CO1.	To do management and audit of energy.	3	2		1	1	3	3				1	1	3	2	1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
						CO2.	To calculate different types of losses and hence evaluate and improve energy efficiency of electrical systems	2	3	3	3		3	3				1	1	3	2	1
						CO3.	To evaluate performance and efficiency of HVAC systems, fans, blowers, pumps, compressed air systems and cooling towers	2	3		3		3	3				1	1	3	2	1
NAMICS						CO1.	To evaluate the impact of stability on the operation and control of power system	2	3		2		3						1		3	1
POWER SYSTEM DYNAMICS & CONTROL		8	3	45	0 0	CO2.	To analyze linear dynamical systems and can apply numerical integration methods	2	3	3		3							1		3	1
ER SYSI	ED1- 812				3	CO3.	To model different power system components for the study of stability	2		3		3							1		3	1
POW & CC	BELED1					CO4.	To use methods to improve stability	2		3			3						1	3		1
EMS						CO1.	Design classical control systems in time domain.	2		3		1	1						1	3		1
SYSTEMS						CO2.	Design classical control systems in frequency domain.	2		3		1	1						1	3		1
	813	8	3	45	300	CO3.	Design controller structures (P, PI, PID, compensators).	2		3		1	1						1	3		1
CONTROL DESIGN	BELED1-81					CO4.	Examine the controllability & observability and can design controllers using state-space approach	2		3	3	1	1						1	3	3	1

Subject	Sub Code	Sem	Credit	Duration	LTP	CO No.	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ELECTRIC						CO1.	Understanding about the control of power converters and their control methods	3	2	3	3								1	3	2	1
ELI					0	CO2.	Control power converters for controlling AC drives	3		3	3	3	3						1	3		1
ADVANCED DRIVES	CD1- 814	8	3	45	3 0	CO3.	Apply the various control techniques for induction motor drives and synchronous motor drives	3		3	3	3	3						1	3		1
ADVAN DRIVES	BELED1					CO4.	Control motion using digital signal processors	3				3	3						1	3		1
POWER						CO1.	Students will be enabled to identify the need of restructuring and deregulation of power industry	3	3				3						1	3		1
G OF		8	3	45	0 0	CO2.	They will be able to manage congestion of transmission network.	3			3		3					1	1	3	2	1
IURIN	815		3		3	CO3.	They will be able to estimate pricing of transmission network	2	3	2			3					1	1	3	2	1
RESTRUCTURING INDUSTRY	BELED1-8					CO4.	Define and describe the Technical and Non-technical issues in restructured power industry	3			3		3	1					1	2	3	1

Enter Correction levels 1, 2 or 3 as defined below:

1. Slight (Low) - upto 30% 2. Moderate (Medium) – above 30% and upto70% 3. Substantial (High) – above 70%